An Effective Dynamic Gesture Recognition System Based on the Feature Vector Reduction for SURF and LCS
نویسندگان
چکیده
Speed Up Robust Feature (SURF) and Local Contour Sequence(LCS) are methods used for feature extraction techniques for dynamic gesture recognition. A problem presented by these techniques is the large amount of data in the output vector which difficult the classification task. This paper presents a novel method for dimensionality reduction of the features extracted by SURF and LCS, called Convexity Approach. The proposed method is evaluated in a gesture recognition task and improves the recognition rate of LCS while SURF while decreases the amount of data in the output vector.
منابع مشابه
Facial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملتشخیص نوع خودرو با استفاده از مدل 3-بعدی
In vehicle surveillance systems, one of the appropriate methods for recognition are 3-D models. Several methods have been proposed for this purpose. Feature based methods are most significant and widely used. In this paper, is proposed an algorithm within recognition framework. Proposed algorithm is considered information of image and model edges as feature. A block descriptor has been used ext...
متن کاملThe Application of Numerical Analysis Techniques to Pattern Recognition of Helicopters by Area Method
In this paper, a new method to selecting different viewing angles feature vector is introduced to recognition different types of Helicopters. Feature vector 32 components based on characteristics of the shape, Area and a length to describe a binary two-dimensional image was created, shape feature and length feature not only effective but area features effective and were used. New features vecto...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کامل